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Risk assessment, system safety, reliability 
engineering, energy, human reliability analysis, 

complex engineering systems 

Current research
Risk-informed PHM for complex 

engineering systems
Risk & reliability approaches for on-site 

hydrogen storage
Data- and model-informed nuclear 
human reliability analysis (HRA)
Third party damage modeling for 

pipeline integrity 
Risk assessment frameworks for 

autonomous vehicleshttp://syrra.umd.edu

Systems Risk and Reliability 
Analysis Laboratory

http://syrra.umd.edu/


Risk assessment of 
complex engineering 

systems 

Energy 
regulations, codes, 

& standards

SyRRA: Safety, risk and reliability engineering 
research for complex engineering systems

Rigorous basic & applied research into risk assessment and decision making 
under uncertainty
 Novel engineering research at the intersection of energy technologies, complex 

engineering systems, & risk and reliability
 For complex systems: Human + machine + environment + physical phenomena + AI 
 Informed by models, engineering expertise, and data, (Not “just” data)
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Active research in the SyRRA lab
 Defining a PHM approach for complex 

engineering systems 
 Constructing adaptive time models for 

risk-informed diagnostic support
 Developing novel risk & reliability 

approaches for hydrogen storage (LH2) 
& hydrogen fueling stations

 Data-informed Human Reliability 
Analysis (HRA)

 Third party damage modeling for 
pipeline integrity using causal models & 
field data

 Risk assessment frameworks for 
autonomous vehicles

In 2021: Open Post-doc, Ph.D. positions
- Computing/software for PRA
- Human reliability modeling for external 
hazards at NPPs

You?
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Reliability Engineering program (ENRE) & 
Center for Risk And Reliability (CRR)
 #1 Reliability Engineering degree program 

in the U.S., #2 internationally (Microsoft 
Academic Rankings, 2020)
 Housed within UMD’s Mechanical Engineering 

Department
 Offers M.S., M.Eng., and Ph.D. degrees – over 

450 graduates since 1990.

 CRR: An umbrella organization for risk and 
reliability research at UMD’s Clark School 
of Engineering. 
 ~15 core faculty; expertise spanning: reliability 

and risk ranging from microelectronics, to 
complex systems, human, hardware, software for 
a wide range of technologies. http://crr.umd.edu
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Context on research with academic 
partners
 Core Goals of CRR:

 Perform cutting edge research in safety, risk and reliability engineering 
of complex socio-technical engineering systems.

 Educate the next generation of engineers & decision-makers.
 Build a world-class center of excellence in risk and reliability.

 Products of R1 “High research activity” universities:
 Students - M.S. and Ph.D.
 Journal papers in high-impact venues
 Basic & applied research with visibility & impact
 Connection to broader societal benefits

© Katrina Groth, 2020



Why study risk & reliability?

 The core of U.S. economy, security and quality of life depends on complex 
engineering systems (CES) that range from power plants,  energy systems, 
and pipelines to aircraft, defense, and transportation.

 Engineers create transformative technologies …but the engineering doesn’t 
end when the product is delivered or the lights come on.

 Systems can be engineered for safety & reliability 
 Engineers need insight into how to prevent, mitigate, and recover from 

system failures, accidents

14



Reliability engineering supports decision-making

 A process to explore priorities, 
to build consensus, to 
encourage discourse among 
interested parties, to build a 
common basis for safety 
discussions

 By building an understanding of:
 What the system is supposed to do 

(performance)
 The sources, causes, and likelihood 

of failures (physics based, human, 
computational, etc.) 

 Strategies to reduce failure (e.g., 
design, operation, maintenance)
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Said another way: Quantitative Risk 
Assessment
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Risk Analysis

• A process used to identify 
and characterize risk in a 
system
• What could go wrong? 
• How likely is it? 
• What are the 

consequences? 

Risk Management

• Provide inputs to decision 
makers on:

• Sources of risk
• Strategies to reduce 

risk
• Priorities

Risk  = “the potential for loss” (more specifically, 
“uncertainty about the potential for and severity of loss(es)”



The field safety, risk & reliability is rapidly 
changing
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2010’s and beyond…
• Prognostics, Systems 

health management; 
• Causality + statistical 

models
• Heterogeneous data, 

big data, sparse data, 
• Machine learning, 

artificial intelligence, 
simulation

• Complex systems; 
systems of systems; 



Motivating questions: New data & computing 
motivate new questions for risk analysis

 We have more data, in more 
formats, at more scales, than 
ever before.

 Recent advances in computer 
science & causality offer new 
opportunities for many fields
 Machine learning, Big data, Data 

science/analytics
 Causal modeling
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• How can we use this to make systems safer?
• And how do we do it without overwhelming decision makers?
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Motivating questions:
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How can we use this data & 
engineering knowledge to make 
systems safer & more resilient? 

(Despite our uncertainty) 

And how do we do it 
without overwhelming 

decision makers?



And we approach this in a Bayesian way

Judea Pearl says:
“Bayes means:
(1) using knowledge we possess prior to obtaining data,
(2) encoding such knowledge in the language of probabilities
(3) combining those probabilities with data and
(4) accepting the combined results as a basis for decision 
making and performance evaluation.”

© Katrina Groth, 2020

Judea Pearl, “Bayesianism and causality, or, why I am only a half-Bayesian”
Foundations of Bayesianism, 2001, 24, 19-34 



Research sponsors
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Scholarship & Fellowships 

Rockwell Collins Fellowship
 Awarded annually to one graduate student in the 

field of reliability engineering on the basis of 
scholastic achievement, research contributions, 
publications, or extra-curricular activities with 
demonstrated contributions to the field.

C. Raymond Knight Fellowship
 Awarded annually to graduate students studying 

reliability engineering on the basis of merit.

Willie M. Webb Scholarship
 Awards annually to women or minorities 

pursuing Reliability Engineering degrees at the 
University of Maryland, based on merit, future 
promise, and contributions to the field. 

Marvin Roush Fellowship
 Recognizes the pioneering contributions of Dr. 

Roush, who helped establish the Reliability 
Engineering educational program in 1991.



 Research Objective: Create a framework which enables active risk 
assessment, management for complex systems by combining concepts from 
PRA, PHM to fuse data from multiple sources (e.g., sensors, operational 
records, maintenance logs, system configuration) at multiple scales 

 Goal: Put the power of many data into the hands of decision makers to 
improve monitoring, diagnosis & response planning

Active research: PACES, a PHM approach for 
complex engineering systems

© Katrina Groth, 2020



Active Research: Leveraging big data in 
NPPs requires a defined strategy

To use big data in NPP operations, we 
need to:
1. Define the types of relevant data & 

information
2. Process disparate plant data streams 

in near-real time for a variety of 
problems

3. Integrate data streams with existing 
engineering knowledge & models

4. Transform complex integrated data 
into useful information needed by 
decision makers

© Katrina Groth, 2020
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“Smart Procedures”: Dynamic risk-informed 
diagnostic support for severe accidents
 Proof-of-principle studies demonstrated possibilities for supporting 

diagnosis using reactor simulation, PRA
 Handles uncertainty (e.g., partial information) - But not a “silver bullet”
 Preliminary insights match expectations

 Redundancy between power/reactivity 
 High diagnostic value for T_coolant

© Katrina Groth, 2020

Groth KM, Denman MR, Jones TB, Darling MC, Luger GF. Building and using dynamic risk-informed diagnosis procedures for 
complex system accidents. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2019.
Darling MC, Luger GF, Jones TB, Denman MR, Groth KM. Intelligent Modeling for Nuclear Power Plant Accident Management. 
International Journal of Artificial Intelligence Tools. 2018;27(2). 



Active Research: Constructing more adaptive 
models for diagnosis in complex systems

© Katrina Groth, 2020
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• Incorporating necessary 

system information



Hydrogen risk & safety research

Developed safety tools & international codes 
for H2 infrastructure through quantitative 
risk assessment
 HyRAM: Spearheaded development of first-of-kind 

integration platform for hydrogen safety models & data 
 Built to put safety R&D into the hands of industry experts

 Subtask leader (Appendix A) of ISO 19880-1 
Hydrogen Fueling Stations: Developed consensus 
approach for defining specific mitigations (e.g., safety 
distances) using HyRAM + regional requirements from 
teams in US, UK, Japan, Germany, France

 Case2A Case2B Case2C Case2D Case2E 
Calculation 
approach QRA QRA Conseq. only 

Conseq. only Conseq. only 

Acceptance 
criterion AIR<1.0e-5 AIR <1.0e-5 < 3.0W/m2 < 1.26kW/m2 < 

1.26kW/m2 

Pipe maximum 
flow diameter 
(either the ID or 
effective ID based 
on flow 
restriction) 

0.3125in (ID 
from 
modules3-5) 

0.3125in (ID 
from modules3-
5) 

N/A. System design is not considered in 
consequence-only approaches. 

Release diameter 
considered 

[All releases 
from 
0.003125in – 
0.3125in] 

[All releases 
from 0.003125in 
– 0.3125in] 

1mm 1mm 1mm 

Internal Temp. 15° C 15° C 15° C 15° C 15° C 

Internal Pressure 700 bar 700 bar 700 bar 700 bar 700 bar 

External Temp. 15° C 15° C 15° C 15° C 15° C 

External Pressure 1 atm 1 atm 1 atm 1 atm 1 atm 

System 
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HyRAM: Making hydrogen safety science 
accessible through computational tools

First-of-its-kind integration platform for state-of-the-art hydrogen safety 
models & data - built to put the R&D into the hands of industry safety 
experts

© Katrina Groth, 2020

Core functionality:
• Quantitative risk assessment (QRA) 

methodology 
• Frequency & probability data for hydrogen 

component failures
• Fast-running models of  hydrogen gas and 

flame behaviors
Key features:
• GUI & Mathematics Middleware
• Documented approach, models, algorithms
• Flexible and expandable framework; 

supported by active R&D Free at http://hyram.sandia.gov



Enabling Hydrogen infrastructure safety 
with QRA & data integration

© Katrina Groth, 2020



Using quality QRA to harmonize safety 
distances: ISO19880-1 Annex A

 International agreement on approach, 
safety examples
 Sub-team: US, UK, Japan, Germany, France –

all agreed to the approach; brought regional 
choices & assumptions

 All calculations using HyRAM tool
 Impact:

 US benefits from harmonized NFPA-ISO 
approach; 

 Bonus value to EU: Reducing cross-border 
challenges

 HyRAM directly enabled progress:
 Real-time use of HyRAM was a key reason 

for coming to consensus; 
 Several collaborators brought their own tools, results, data 

(some proprietary); Results generally agreed once we were 
able to make assumptions/choices clear and use those 
directly in the calculations;

 Collaborators HyRAM usability, speed 
combined with methodology flexibility and 
transparency, as more beneficial to permitting 
than the resulting distances.
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 Case2A Case2B Case2C Case2D Case2E 
Calculation 
approach QRA QRA Conseq. only 

Conseq. only Conseq. only 

Acceptance 
criterion AIR<1.0e-5 AIR <1.0e-5 < 3.0W/m2 < 1.26kW/m2 < 

1.26kW/m2 

Pipe maximum 
flow diameter 
(either the ID or 
effective ID based 
on flow 
restriction) 

0.3125in (ID 
from 
modules3-5) 

0.3125in (ID 
from modules3-
5) 

N/A. System design is not considered in 
consequence-only approaches. 

Release diameter 
considered 

[All releases 
from 
0.003125in – 
0.3125in] 

[All releases 
from 0.003125in 
– 0.3125in] 

1mm 1mm 1mm 

Internal Temp. 15° C 15° C 15° C 15° C 15° C 

Internal Pressure 700 bar 700 bar 700 bar 700 bar 700 bar 

External Temp. 15° C 15° C 15° C 15° C 15° C 

External Pressure 1 atm 1 atm 1 atm 1 atm 1 atm 

System 
configuration 
(sources of 
releases)  
 

 

2 
Compressors, 
40 Cylinders, 

20 Valves, 8 
Instruments, 0 

filters, 0 
flanges, 24 

(non-welded) 
joints,  0 hoses, 

20m pipes 

2 Compressors, 
48 Cylinders, 32 

Valves, 12 
Instruments, 0 

filters, 0 flanges, 
44 (non-welded) 

joints,  0 hoses, 
30m pipes. 

 N/A. System design is not considered in 
consequence-only approaches. 

Credit for 
additional 
mitigations (e.g., 
gas or flame 
detection) or 
other 
documented 
considerations 
(e.g., direction of 
release) 

0.9 
(reduction by 

90% of 
frequency) 

0.9 
(reduction by 

90% of 
frequency) 

N/A. System design is not 
considered in consequence-only 
approaches 

Region E 
allows safety 
distances to 
be reduced 
by 50% if 
barrier walls 
added 

Number of 
exposed persons 1 1 

 N/A. Exposed population is not 
considered in consequence-only 
approaches. 

 N/A. 
Exposed 
population is 
not 
considered in 
consequence-
only 
approaches. 

Person’s exposed 
hours in 1 year 8760 8760 

 N/A. Exposed population is not 
considered in consequence-only 
approaches. 

 N/A. 
Exposed 
population is 
not 
considered in 
consequence-
only 
approaches. 

Illustrative 
examples of 
Calculated safety 
distance 
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Active research: Development of PHM 
capabilities for LH2 station w/on site storage

© Katrina Groth, 2020

• Objective: Develop scientific methods for 
LH safety distance requirements in safety 
codes and standards (e.g., NFPA 2)

• Approach: Develop LH2 PHM and 
reliability models 
• Failure mode identification of selected 

design.
• Scenario development for LH2 releases
• Python-based PHM framework for 

prediction of reliability metrics (e.g., 
component life, fault diagnosis, maintenance 
schedules) 

• Impact: Reduce safety distances that limit 
development of urban markets.



Estimation of probability of 
failure with a high confidence 
level plays an important role in 

maintenance optimization.

Different failure modes & 
sequences must be investigated 
and consequences based on the 

historical data or physical 
modeling

[Iqbal et al, 2017]

Active research: Defining a risk informed, 
data-driven maintenance policy

© Katrina Groth, 2020



t (year)

Active research: Developed a hybrid (data + 
physics) corrosion degradation model for 
pipeline Prognostic and Health Management

© Katrina Groth, 2020

Application to 
maintenance 
policy planning



2004-2009 2011 2013 2015 2017 2019 …

Data-informed Human Reliability 
Analysis

© Katrina Groth, 2020

2004-2009, UMD
PhD on Data informed HRA

•2009 Dissertation on data-informed 
PSF modeling

•2012 Data-informed PIF hierarchy 
•2012 Data-informed BN for PIF 
dependency

2008, INL
HERA data 
collection

2011, SNL
U.S. HRA 
empirical 

study

2012-2013, SNL 
Leveraging 

published data to 
quantify IDHEAS 

HEPs

2011-2014, SNL
Bayesian updating 
Bayesian Networks. 
Using SPAR-H + 
Halden data

2017, SNL
Capturing 

cognitive causal 
pathways in 

HRA

2018, UMD
SACADA data-use framework

•Submitted: A hybrid approach to HRA using 
simulator data, casual models, and cognitive 
science

2018-2019, UMD/UCLA
PHOENIX + causal BNs 

and quantification 
approach



New: Defined a generalized set of HRA 
quantification elements for data fusion
 3 core types of variables:

 Performance influencing 
factors (PIFs)

 Crew failure modes (CFM)
 Macrocognitive functions 

(MCFs)

 5 core types of probabilistic 
relationships need to be 
quantified (4 of which 
involve dependency):

© Katrina Groth, 2020

Pr(𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥)
Pr(𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥|𝑝𝑝𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥))
Pr 𝐸𝐸𝑃𝑃𝐵𝐵𝑘𝑘 𝑝𝑝𝑃𝑃 𝐸𝐸𝑃𝑃𝐵𝐵𝑘𝑘
Pr(𝐵𝐵𝐸𝐸𝑃𝑃𝑖𝑖|𝑝𝑝𝑃𝑃(𝐵𝐵𝐸𝐸𝑃𝑃𝑖𝑖))
Pr(𝐻𝐻𝑃𝑃𝐸𝐸|𝐵𝐵𝐸𝐸𝑃𝑃𝑀𝑀))

K. M. Groth, R. Smith, and R. Moradi, “A hybrid approach to HRA using simulator data, causal 
models, and cognitive science,” Reliability Engineering and System Safety, vol. 191, Nov. 2019



New: A hybrid approach to HRA quantification 
using simulator data, causal models, and cognitive 
science

 Step 1: Causal Factor Mapping (BN structure development)
 Create a causal map of the relationship between the PIFs, CFMs, and MCFs using Bayesian 

Networks. (Groth 2012; Ekanem &Mosleh 2013; Zwirglmaier, Straub, Groth 2017)
 Simplify BN structure using node reduction (Zwirglmaier, Straub, Groth 2017)

 Step 2: Prior model quantification (BN parameterization)
 Map source variables to PIFs, CFMs, and MCFs taxonomy (Groth 2012)
 Use expert elicitation, current HRA method, deterministic relationships to get priors

 Step 3: Bayesian update model parameters
 Map data source variables to PIFs, CFMs, and MCFs taxonomy 
 Bayesian update specific conditional probability relationships using data source (Groth, Swiler, Smith 

2014)
 Step 4: Use the BN for HRA activities 

© Katrina Groth, 2020

K. M. Groth, R. Smith, and R. Moradi, “A hybrid approach to HRA using simulator data, causal 
models, and cognitive science,” Reliability Engineering and System Safety, vol. 191, Nov. 2019



Active Research: Defining types of 
dependency between Human Failure Events 
in Human Reliability Analysis 
 Developing the theoretical and mathematical foundations to model 

“Human Reliability Analysis dependency” between Human Failure 
Events (HFEs).

 Captures causation, not just correlation; Model & data informed
 Enables better human-machine teams, task allocation, risk 

assessment

© Katrina Groth, 2020

Photo Source: http://www.spokesman.com/stories/2017/jul/07/renewable-
sources-of-electricity-outpace-nuclear-p/



Active research: data-informed causal model 
of human reliability for nuclear power plant 
operators
 PIF hierarchy + SACADA data + Cognitive Basis + DBNs 
 Result: New paradigm for HRA. 

 Data-driven, science-based, dynamic, transparent, repeatable.

© Katrina Groth, 2020
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position 

with even amount of white 
space

between photos

 Objective:
 Conduct rigorous basic & applied research into risk assessment and 

decision making under uncertainty for complex engineering systems
 Informed by models, engineering expertise, and data
 Portfolio approach: Active research on PRA, PHM, HRA with direct 

impact on safety for hydrogen energy, oil and gas, transportation, and 
nuclear power

 Results to date:
 XYZ journal & conference papers
 1 Ph.D., 2 MS degrees graduates as of 2020.

 Next steps:
 Expanding capabilities & size of SyRRA lab, CRR

 Impact: 
 Research contributions to system safety, risk analysis, and reliability 

engineering
 Educating a new generation of researchers & practitioners to think 

deeply about risk, reliability, and safety
 Service to the global engineering community & UMD

Summary

45
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